“Navigare necesse est,
vivere non est necesse.”

Pompeius

Navigation



What does navigation means?

.Navigation is the process of determining and maintaining a course
or trajectory from one place to another. Processes for estimating
one’s position with respect to the known world are fundamental to

it. The known world is composed of the surfaces whose locations
relative to one another are represented on a map.”

C. K. Gallistel: The Organization of Learning. MIT Press/Bradford Books, M4, 1900

Thus, we need to know:
Where we are?

Where are the important places relative to me?
How to get there?



0. Random
Navigation

1. Praxic
Navigation

2. Dead
reckoning

3. Target
approaching /
Guidance /
Avoidance

4. Place
triggered

5. Topological
navigation

6. Metric
Navigation

Hierarchy of Navigation Strategies

none

Position in a sequence

Actual position

Sensible property of / landmark
configuration at the aim

1. Landmark configurations defining
places

2. Local directional reference frames
3. Direction of the movement, that
leads to the aim

Set of landmark configurations
linked by topological relationships

Set of landmark configurations
linked by metrical relationships

none

none

none

Direct /
Indirect
sensation of
the aim

Actual
landmarks

Actual
landmarks

Actual
landmarks

Random wandering

Execution of a pre-defined
/ learned sequence of
actions

Path integration

taxis

Self-localization by place

recognition

Association of recognized
places to the actions that

leads towards the aim

Graph searching, way
finding

Vector subtraction,
trigonometrics
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Typical praxic tasks

and solutions

No external clue or

sensory input is required




The Braitenberg cars:
taxis




Place recognition-triggered versus topological navigation

’ @ bQ‘Q .
2o @ **

(a) collection of routes to goals G1 and G2 (b) topelogical representation derived from the routes

O place

e direction of movement to reach the corresponding goal

H"“wr._ direction of travel between two "adjacent” places
<. new obstacle

Fig. 3. (a) With the place recognition-triggered response strategy there can be an ensemble of intersecting

routes. The animat is able to go from S1 to Gl, from 82 to G2, and from S3 to G1. However, if there

is a new obstacle on the way from S1 to Gl, as on this figure, the animat is lost, because the route from

S1 to Gl is unique (see also Fig. 2). (b) In contrast, if the animat merges its representations of routes

into a topological representation, the animat can go back to place A, take the sub-route between places

A and B, and take the sub-route from place B to the goal G1. The resulting path is the concatenation
of three sub-sequences, derived from three different routes.



Metric navigation

Detour finding Shortcut finding

Unknown
area
/ Known long route

New wall



Hippocampus

* Place recognition is required to apply higher order navigation strategies
* Place cells in the hippocampus (Pyramidal cells in CA1 and CAS region, 1971)

The Hippocampal Network: The hippocampus forms a principally uni-directions] network,
nddtlvputﬁumh&mimﬂcmhlllﬂ: that forms connactions with the Dentate Gyrus
ﬁ].ﬂmanﬂnﬂﬂm:.vu @ ani Path (PP - split into lateral and medial).
nerons M50 recerie input from the DG via the mossy libres (WF), They send axons

o CAT pyramidal colls via the Schafer Collateral Pathway [(SC), as well as to CA1 celis in
the contratateral hippocampus via the Associabional Commissural pathway (AC) CA1
nourons slso recere nput direcily from the Perlorant Path and send axons o the
Sublculpm (5b). These neuron in twm send the main hippocampal eutput back to the EC,

formang a koop.




Hippocampus

* Place recognition is required to apply higher order navigation strategies
* Place cells in the hippocampus (Pyramidal cells in CA1 and CAS3 region, 1971)




Hippocampus in the human brain: episodic memory




What determines the position of a place field?

e Visual information

/7N

e but: in blind and deaf animals 1
Initial configuration

« Tactile Q
\ “salient” visnal cue
bl recaprgEolier cand 42 2 oniform blsck cunmes
place field

« Olfactory

* Vestibular = p.m o sy

/— .
« Memory traces \ // \ // .\\

+ Context .J \\./ \\ //

* Firing frequency is independent

of the direction (a) rotating the cue-card (b) introducing a symmetrical cue
* Independent of the aim and 2 point of entry

L4 Frequency COdlng (. Trufher £4 mbss: Biologically based artificial navigation systemi; rewisy and prospects. Progress in Mewrobolegy 51 483544, 1957



Phase precession - phase code

PF1 PF2

= Rat's movement over time

Relation between firing and position

Action potentials of the place cell associated with PF1
If Il I I Action potentials of the place cell associated with PF2

hippocampal EEG
theta cycle (transformed in a spatial scale)

0° 360°
early early early early

middle middle middle middle
late late late late

 Spatial code inside the place field?

Running direction



Long Term Potentiation

* LTP — long term potentiation (1966): was discovered in the hippocampus.

EPSP Field Rising Slope (mV/ms)
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Learning at cellular level

« LTD —long term depression: can be elicited
* by weak stimulus

« STDP — spike timing dependent plasticity:

Synapse modification
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Head direction cells

 Their firing correlate with the head direction
* Independently of the position
e During rest and movement

* presubiculum, postsubiculum, posterior
cortex, thalamus, striatum

* In the thalamus: The future head direction

Is coded (~25 ms latter), prospective coding.

Firing Rate (spikes/sec)

Firing Rate (spikes/sec)

Peak firing rate

60 =
40 |
| Directional , '
20- frng ra -- >
i J Preferred
' P +'__firing direction
" !."-H—l.

o .
0 60 120 180 240 300 360
Head Direction (°)

707 CCW tums
60 - CW turns
m 4
40
30 »
Eﬂ d
101
ﬂ.-:.!.-.ﬁ;';.';'f"::.:?:e-.,ﬁ‘.!.' - k™ O
0 60 120 180 240 300 360

Head Direction (")



Head direction cells

* Primary, based on external clues. (eq. visual) e O)

— ——— 1807 Cue Rotation (O
 Without this, they are able to keep on the pattern, 8 100 —— Standard2 O
based on internal information (eq. vestibular) 3 g \ A

& 60 / H'-.

g 40 \
« Removing the clue changes the firing E ot e/ A
pattern of all HD cells together by a random 0 60 120 180 240 300 360
angle Head direction (°)

 Furring of place cells change accordingly
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Cell 2 - Standard O)

%) ~e—a— Cell 1 - No Landmark Cue O

% 80 —e—se (Cell 2 - No Landmark Cue

¢

€

o ¥

L

2

-

e |/ G

:E D ke Wy ] . AR n ' l
e 0 60 120 180 240 300 360 —=  rat’schoice

Head direction (°) @  place fields



Head direction cells

An attractor network model: ring of excitatory and inhibitory connections

b Clockwise mation Mo motion
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e Copyright © 2006 Nature Publishing Group
FE.! irany Nature Reviews | Neuroscience



Grid cells

- Pyramidal cells in the 2™ layer of the medial entorhinal cortex
 Position dependent activity

« Maximal firing frequency in the vertices of a triangular grid

e Parameters: spatial frequency, orientation, 2D phase

action potentials  fjring frequency  autocorrelation

Hafting et al., Nature, 2005




A new type of spatial representation:
The grid cells

Action potentials  Firing frequency Autocorrelation

Hafting et al., Nature, 2005 Yy

- i

- Pyramidal cells in the 2™ layer of the medial entorhinal cortex
e Position dependent activity

e Maximal firing frequency in the vertices of a triangular grid

e Parameters: spatial frequency, orientation, 2D phase

How does a crystal-lattice get to the brain?



The basic prperties of the grid system

a

Location and the
structure of the MEC
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The basic properties of the grid system

Phase: The neighboring cells
have common period length, but
their grid is shifted.

| 1::?-,-,,,_,jlaé Periodiciy
J .:* .
- IR
The grid pattern appears ] il
for the first run C




Firing properties of the grid cells

Independent of the size of the environment Determined by visual clues

ight Dark Light
e o

® ®

Om @0 @

10 Hz
Immediate appearance

43 20 28 e 28 Hz
Fyhn et al., 2004 : Foe of g
Hafting et al., 2005 L
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Nobel prize in medicine 2014

John O'Keefe May-Britt Moser Edvard |. Moser
Born 1939, USA Born 1963, Norway Born 1962, Norway
University College London Norwegian University Norwegian University
of Science and of Science and
Technology, Trondheim Technology, Trondheim




Possible role: path

integration

{a) Mormal path integration

i
m{ﬁjxﬁz ‘? x,
Y =

" After finding an

ssect that has been 1
kilted by the haat,

the ant takes a direct
path back to its nest, }

A foraging ant takes b}
a tortuous path in X
search of food.

(B Path integration with displacement

L, / Actual
i
"It =l
refurmed (o
0 5
———

m




A Spin Glass Model of Path Integration in Rat Medial Entorhinal
Cortex Mark C. Fuhs and David S. Touretzky (Journal of
Neuroscience)

A B A Metwork Activity Pattern Formation and Translation
C
0.8
E 8 Spatial Firing Fields
L

Call a8 31,31

025

(d)
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How it is possible to determine the
position based on grid code?

By summing up grids with corresponding phase

Base numbers
— — LCM=185725 771191231 25
Number Residum
3246 16 | 16 | 3 | 21
3247 0O | 17 | 4 | 22
3248 1 |18 | 56 | 23

This corresponds to a Chinese
remainder numeral system.

Unigue until the least common

multiple.




The capacity increases exponentially

Yoram Burak, Ted Brookings, lla Fiete (arXiv)

0403 02 Ty
AG/2T
N, Ap2r| D (m) # grid cells  # place cells
12 0.2 2 x 103 5x 104 ~1010
24 0.2 2 x 108 1 % 105 ~1020




Models




Burgess et al., Neural Networks, 7, 1065-1081, 1994

Firing field of sensory neuron 1
\ (dedicated to landmark 1)

-

- “" Firing field of sensory neuron 2
e (dedicated to landmark 2)

landmark 2
e O

-

Centroid of the landmarks 1 and 2
(approximate center of the EC cell’s firing field)

Fig. 24. Firing phase computation yields «, the angie

between the heading direction of the animat and the

direction defined by the position of the animat and the

centroid of landmarks 1 and 2; the phase will be “Late™ if

la| is smaller than 60°, “Middle” if la! is between 60°

and 120° and “Early” if || is greater than 120°. (After
Burgess et al., 1994.)



Burgess et al., Neural Networks, 7, 1065-1081, 1994

reinforcement signal ; in the late phase of theta

O

head-direction cells
O

o O 9 goal cells (GC)

on/off synapses b et : Reaching the aim, the
{/-l;]%\ Hehibia ™ remifuaemmont lewndigy animat looks around into

all the 8 directions.
subicular cells (SC)
%
competitive clusters on/off synapses Hebbian learing

5[!%

{:}DQQ OQOOQD place cells (PC)

on/off synapses Hebbian learning
50%

QRAAQOOOOOOOOOOOOOOOOOOOC0  entorhinal cells (EC)

hard-wired connections

\\?. COOOO0O000 SENsory neurons

Fig. 23. Burgess et al.'s feedforward network inspired by the hippocampus architecture. Cells (circles) in

some layers are organized into clusters (ellipses). There are five clusters of 50 place cells, 10 groups of

25 subicular celis and eight goal cells for each goal, corresponding to 8 head-direction cells. (After Burgess
el al., 1994.)




Burgess et al., Neural Networks, 7, 1065-1081, 1994

Figure 8: Typical firing rate maps of cells in the different layers of the model after 604 exploration,
showing qualitative agreement with known extracellular recordings from entorhinal cells and place
cells, and predieting firing rate maps for subicular cells and ‘goal cells’. The simulated rat moves
evenly across the environment; spikes were binned in a 10 x 10 grid, each contour represents 10%
of the peak firing rate. Top row: entorhinal cell, peak rate is 40Hz (left), place cell peak rate is
30Hz, (right). Bottom row: subicular cell, peak rate is 40Hz (left), goal cell representing east (the
goal is at the centre), peak rate 101Hz (right).



Burgess et al., Neural Networks, 7, 1065-1081, 1994

Figure 5: One possible set of firing rate maps giving rise to a population vector representing the
position of the rat from the goal at G.



Burgess et al., Neural Networks, 7, 1065-1081, 1994
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Figure 9: Trajectories taken by the simulated rat. Goals (marked by '%’) were encountered after
30s exploration in the goal-less environment. Each dagh represents one movement (0.1s), cues are
marked by ‘4’, The average initial number of on connections to a PC or 5C, < ), =, was 1. Top:
navigating to the goal from 8 starting positions on the first block of trials after encountering the
goal, average escape latency is 1.4s (left), navigation with the goal removed, showing localisation
of search (right). Bottom: navigation between two goals (left), and after an obstacle (marked by
*") is encounterad (right).

Summary

» One-shot learning at goal
» Hebbian learning

* Latent learning

» Phase-presession

« Sensory neurons?

» Goal cells?

* PC and SC layers are
unnecessary

» Works only in a limited
distance from the goal
(SC place field size)



Reinforcement learning:
an actor-critigue architecture

FIGURE 2. The actor-critic system. a: An input lﬂ}'er of p!m:e uses to select berween Eight pmsib!e directions of movement from any
cells projects to the critic cell, C, whose output is used to evaluate given location. b: An example of a Gaussian place field (x and y axes
behavior. Place cells also project to eight action cells, which the actor  represent location, z axis represents firing rate).



Parallel learning of policies and the
values
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The temporal difference rule:

The critic depends on position p:

I:':I:l_ﬂ = 2 _ri'l._,i'r'_;i}'ﬁl

The value function (V) must satisfy:
Wp) = (B, + YRy + T Riun +

Where v is a constant discount factor
for predicted (not actual) reward. From
this the consistency of the value:

Vip) = (R) + yVips)

A well trained critic should satisfy the
same consistency assumption:

Clp) = iR) + yClp,,).

The actual difference between the
two sides governs the learning, this
is called the temporal difference
learning rule:

o, =R +yClp,.,) — Clp,)

The weight changes are proportional
the the difference :

Az, = 0, fp,).



The temporal difference rule:

Two sources of value:

6 =R +vyClp,, ) — Clp,)

L )

The actually achieved The difference between the
reward expected and the achieved
Increase.

Together expresses the difference between the expected
and actual reward.



The effect of reward
in dopaminerg cell

of basal ganglia
An interpretation:

Dopamine cells signals the difference
between the expected and received
reward = The Basal Ganglia

No prediction
Reward occurs
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Animat navigation using a cognitive graph
Olivier Trullier, Jean-Arcady Meyer: Biol. Cybern. 2000

This article describes a computational model of the hippocampus that makes it possible for
a simulated rat to navigate in a continuous environment containing obstacles. This model
views the hippocampus as a " cognitive graph", that is, a hetero-associative network that
learns temporal sequences of visited places and stores a topological representation of the
environ-ment.

Calling upon place cells, head direction cells, and "“goal cells", it suggests a biologically
plausible way of exploiting such a spatial representation for navigation that does not
require complicated graph-search algorithms. Moreover, it permits " latent learning” during
exploration.

The model implements a simple " "place-recognition-triggered response" navigation
strategy. It implements and uses fine details as phase precession and spike time
dependent plasticity.



Animat navigation using a cognitive graph
Olivier Trullier, Jean-Arcady Meyer: Biol. Cybern. 2000

;@%B%CﬁDfE;”FFG/H/I/J/

A=B=0=D=4&~F=+0
B~-C-D-E-F-~-G-H
C=pD=E=F=+~H+]

a*

Phase precession explained by sequence learning. Each bin in

this grid-like world corresponds to a unique place. The rat has learned
the sequence of places from A to J. It subsequently moves from A to
J

(top): when it is in A, it recalls the sequence from A to G (bottom);
when it is in B, it recalls the sequence from B to H; and so on. Each
movement and each prediction phase takes a full theta cycle. Thus,
the representation of the current place starts a new theta cycle and
the prediction of place E comes earlier and earlier in the cycle (dotted
arrow), that is the phase of ®ring of the place cell corresponding to E
diminishes



The structure of the model
Olivier Trullier, Jean-Arcady Meyer: Biol. Cybern. 2000
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Learning of cognitive graph
Olivier Trullier, Jean-Arcady Meyer: Biol. Cybern. 2000

physical space

et Haﬁg /\ *,:*",}'“‘:: neural space

The modified connection between two place cells in neural

space corresponds to the facts that the corresponding placefields are
neighbors and that the place field of the post-synaptic cell is in the
direction corresponding to the head-direction that modulates the
connection, with respect to the place field of the pre-synaptic cell.



Exploration
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Exploitation
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Creating subgoals

aa

0.4

iy

R e

oo e e

e =
SHCHE R R R R A A S A Y

LT Y
CHCNN R
b =

a4 f
a2

L]

0

|
s =

oo

i ]

fd =



A

0E [
06 |
040

020

Possible alternative routes

{c)

LH q
P2
\
—
o6 1
N
\&/
04

08 [

06 -

04 b




Spatial cognition and neuro-mimetic navigation:
a model of hippocampal place cell activity

Angelo Arleo, Wulfram Gersiner
Centre for Neuro-Mimetic Systems, MANTRA, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, EPFL, Switzerland
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Fig. 1. Functional overview of the model. Allothetic and idiothetc Fig. 8 The variance of the sEC cell activity around the center of mass

stimuli are combined to yield the hippocampal space representation. Pox- When the variance falls below the fixed threshold E the spatial
Mavigation is based on place cell activity, desired targets, and rewards location p,,. is used to calibrate the robot’s position
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Extraction of distance
from grid cell activity
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Analytic calculations based on grid decomposition
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Number of necessary cells to represent distances
up to a given precision
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The number of necessary cells increases as power low with the size of the
environment in case of simpler solutions, only grid cells provide scalable solution,
which increases logarithmically.
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FRAMEWORK

* The rat is exploring a 20 x 20 m arena #ﬂ

* When it reaches the significant place
(origin), grid cell synapses get potentiated

« One-shot learning: synaptic weigth becomes X Origin
proportional to the firing frequency of the
(presynaptic) grid cell at the origin

» The animal's distance from this point should
be measured

20 m
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Why it Is important?

The main drive of the mammalian evolution was the
conquer of the night

The path integration based navigational system of the
rat works well in the darkness™

Navigation in the darkness requires awareness of non-
sensible objects

This could be a main step towards higher level of
abstraction



Thank you!
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