
W I G N E R RESEARCH
CENTRE PHYSICSFOR

WIGNER RESEARCH CENTRE FOR PHYSICS

csnlcsnlcsnl
csnl

Reinforcement learning
Gergő Orbán

1

http://golab.wigner.mta.hu

Recap: Learning frameworks

2

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Recap: Learning frameworks

• Unsupervised

2

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Recap: Learning frameworks

• Unsupervised

• Supervised learning: y=f(x) — essentially a mapping from
input to output
-> task specific
-> requires labelled data points
-> essentially optimization
-> back-propagation could be easily obtained

2

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Recap: Learning frameworks

• Unsupervised

• Supervised learning: y=f(x) — essentially a mapping from
input to output
-> task specific
-> requires labelled data points
-> essentially optimization
-> back-propagation could be easily obtained

• Reinforcement learning
-> phrasing learning as collection of reward
-> sparser learning signal
-> max E [Reward(input, action)]

2

http://golab.wigner.mta.hu

Dual challenge
reward is not immediate:

most of the actions are not rewarding by themselves, as rewards are distal

Dual challenge
reward is not immediate:

most of the actions are not rewarding by themselves, as rewards are distal

 options are not readily available:
rewards are not known and one experience does not tell exactly how rewarding a state is

http://golab.wigner.mta.hu

Reinforcement learning

4

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State

everything the agent can
not fully control

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

everything the agent can
not fully control

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

everything the agent can
not fully control

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

everything the agent can
not fully controlstate transition

function G(st, at)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action

everything the agent can
not fully controlstate transition

function G(st, at)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

everything the agent can
not fully controlstate transition

function G(st, at)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

• policy maps states to
actions

everything the agent can
not fully controlstate transition

function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

• policy maps states to
actions

• actions may change the
state and/or lead to reward

everything the agent can
not fully controlstate transition

function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

• policy maps states to
actions

• actions may change the
state and/or lead to reward

Reward

everything the agent can
not fully controlstate transition

function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

• policy maps states to
actions

• actions may change the
state and/or lead to reward

Reward
• Rt(s,a) is the reward given at

time t in state s and action a

everything the agent can
not fully control

reward function Rt(st,at)

state transition
function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

• policy maps states to
actions

• actions may change the
state and/or lead to reward

Reward
• Rt(s,a) is the reward given at

time t in state s and action a

• negative or positive

everything the agent can
not fully control

reward function Rt(st,at)

state transition
function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the

environment with actions

• policy maps states to
actions

• actions may change the
state and/or lead to reward

Reward
• Rt(s,a) is the reward given at

time t in state s and action a

• negative or positive

• goal: maximise total reward

everything the agent can
not fully control

reward function Rt(st,at)

state transition
function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

ℛ = ∑
k

αkrkdiscounted reward:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

V(s) = 𝔼[ℛt |s]more precisely:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

V(s) = 𝔼[ℛt |s]more precisely:

Vπ(s) = 𝔼π[ℛt |s]more more precisely:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

V(s) = 𝔼[ℛt |s]more precisely:

Vπ(s) = 𝔼π[ℛt |s]more more precisely:

policy:
π(at |st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

V(s) = 𝔼[ℛt |s]more precisely:

Vπ(s) = 𝔼π[ℛt |s]more more precisely:

policy:
π(at |st)

thus, make explicit that not all states are equivalent: rt+1 = r(st, at, st+1)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Reinforcement learning

5

ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

V(s) = 𝔼[ℛt |s]more precisely:

Vπ(s) = 𝔼π[ℛt |s]more more precisely:

policy:
π(at |st)

thus, make explicit that not all states are equivalent: rt+1 = r(st, at, st+1)

along with how the world works — — we have all the ingredientsp(st+1 |st, at)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

6

what is the value associated with a given state under a policy?
Bellmann equation:

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

Slight generalization: Bellmann equation for Q:
Q⇡(s, a) =

X

s0

P (s0|a, s)
h
r(s, a, s0) +

X

a

⇡(a|s0) �Q⇡(s
0, a)

i

Q⇡(s, a) =
X

s0

P (s0|a, s)
h
r(s, a, s0) +

X

a

⇡(a|s0) �Q⇡(s
0, a)

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

• state-space is huge - searching takes a long time!

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

• state-space is huge - searching takes a long time!

• state dynamics is unknown

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

• state-space is huge - searching takes a long time!

• state dynamics is unknown

• state dynamics can be stochastic - noisy environment or noisy action

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

• state-space is huge - searching takes a long time!

• state dynamics is unknown

• state dynamics can be stochastic - noisy environment or noisy action

• rewards can be stochastic

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

• state-space is huge - searching takes a long time!

• state dynamics is unknown

• state dynamics can be stochastic - noisy environment or noisy action

• rewards can be stochastic

• states are only partially observed

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenges in RL

7

Why is it hard?
• rewards are distal - credit assignment problem

• exploration - exploitation dilemma

• state-space is huge - searching takes a long time!

• state dynamics is unknown

• state dynamics can be stochastic - noisy environment or noisy action

• rewards can be stochastic

• states are only partially observed

• rules change with time

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenge 1: uncertain outcomes

8

We consider the simple setting, where every action might be rewarding, only the expected reward
for the state is changing

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenge 1: uncertain outcomes

8

We consider the simple setting, where every action might be rewarding, only the expected reward
for the state is changing

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenge 1: uncertain outcomes

9

We consider the simple setting, where every action might be rewarding, only the expected reward
for the state is changing

Every state has a valueQ

Keep up the current state as long as the value of it
exceeds the value of others.
OR
Keep the current state as long as the value of it
exceeds the average value of states

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenge 1: uncertain outcomes

9

We consider the simple setting, where every action might be rewarding, only the expected reward
for the state is changing

Every state has a valueQ

Keep up the current state as long as the value of it
exceeds the value of others.
OR
Keep the current state as long as the value of it
exceeds the average value of states

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Challenge 1: uncertain outcomes

9

We consider the simple setting, where every action might be rewarding, only the expected reward
for the state is changing

Q(s) = 𝔼[ℛ]formal goal:
ℛ = ∑

k

αkrk(s)discounted reward:

Every state has a valueQ

Keep up the current state as long as the value of it
exceeds the value of others.
OR
Keep the current state as long as the value of it
exceeds the average value of states

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural correlates of RL

10

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural correlates of RL

10

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu 11

Figure 2. Performance of alternative models. A, Efficiency of models and experimental animals in harvesting rewards. Four
models are compared: win-stay–lose-switch (WSLS), two versions of the reinforcement learning model (Standard RL, Inferential
RL), and the foraging model. Chance level is at 33%. Dashed line: performance of an optimal model. B, Predictive performance
of alternative models on the choice behavior of the two animals. Both RL models were tested with and without fitting the stickiness
parameter (RL-s). Performance is measured through calculating the likelihood of making the choice of the animal per trial. C,
Comparison of Inferential RL performance at various values of learning rate and fitted values for the two animals (dots). D,
Comparison of foraging model performance at various settings of two key parameters (learning rate and switch threshold) and the
performance of the model at parameter values fitted to the choices of the experimental animals. E,G, Behavior of the alternative
models (colors and labels as on A) for different reward histories, evaluated through the probability of choosing to switch in trial t (E:
KA; G: PO). F,H, Model predictions of the alternative models for within-block behavior. Models are fit to individual animals (F: KA;
H: PO). Behavior is best explained by the foraging model for both monkeys. Top: probability of selecting the HIGH target; bottom:
probability of choosing to switch between trials. Dashed line marks the start of the last five trials, where reward probabilities
change gradually

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 2. Performance of alternative models. A, Efficiency of models and experimental animals in harvesting rewards. Four
models are compared: win-stay–lose-switch (WSLS), two versions of the reinforcement learning model (Standard RL, Inferential
RL), and the foraging model. Chance level is at 33%. Dashed line: performance of an optimal model. B, Predictive performance
of alternative models on the choice behavior of the two animals. Both RL models were tested with and without fitting the stickiness
parameter (RL-s). Performance is measured through calculating the likelihood of making the choice of the animal per trial. C,
Comparison of Inferential RL performance at various values of learning rate and fitted values for the two animals (dots). D,
Comparison of foraging model performance at various settings of two key parameters (learning rate and switch threshold) and the
performance of the model at parameter values fitted to the choices of the experimental animals. E,G, Behavior of the alternative
models (colors and labels as on A) for different reward histories, evaluated through the probability of choosing to switch in trial t (E:
KA; G: PO). F,H, Model predictions of the alternative models for within-block behavior. Models are fit to individual animals (F: KA;
H: PO). Behavior is best explained by the foraging model for both monkeys. Top: probability of selecting the HIGH target; bottom:
probability of choosing to switch between trials. Dashed line marks the start of the last five trials, where reward probabilities
change gradually

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 2. Performance of alternative models. A, Efficiency of models and experimental animals in harvesting rewards. Four
models are compared: win-stay–lose-switch (WSLS), two versions of the reinforcement learning model (Standard RL, Inferential
RL), and the foraging model. Chance level is at 33%. Dashed line: performance of an optimal model. B, Predictive performance
of alternative models on the choice behavior of the two animals. Both RL models were tested with and without fitting the stickiness
parameter (RL-s). Performance is measured through calculating the likelihood of making the choice of the animal per trial. C,
Comparison of Inferential RL performance at various values of learning rate and fitted values for the two animals (dots). D,
Comparison of foraging model performance at various settings of two key parameters (learning rate and switch threshold) and the
performance of the model at parameter values fitted to the choices of the experimental animals. E,G, Behavior of the alternative
models (colors and labels as on A) for different reward histories, evaluated through the probability of choosing to switch in trial t (E:
KA; G: PO). F,H, Model predictions of the alternative models for within-block behavior. Models are fit to individual animals (F: KA;
H: PO). Behavior is best explained by the foraging model for both monkeys. Top: probability of selecting the HIGH target; bottom:
probability of choosing to switch between trials. Dashed line marks the start of the last five trials, where reward probabilities
change gradually

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 2. Performance of alternative models. A, Efficiency of models and experimental animals in harvesting rewards. Four
models are compared: win-stay–lose-switch (WSLS), two versions of the reinforcement learning model (Standard RL, Inferential
RL), and the foraging model. Chance level is at 33%. Dashed line: performance of an optimal model. B, Predictive performance
of alternative models on the choice behavior of the two animals. Both RL models were tested with and without fitting the stickiness
parameter (RL-s). Performance is measured through calculating the likelihood of making the choice of the animal per trial. C,
Comparison of Inferential RL performance at various values of learning rate and fitted values for the two animals (dots). D,
Comparison of foraging model performance at various settings of two key parameters (learning rate and switch threshold) and the
performance of the model at parameter values fitted to the choices of the experimental animals. E,G, Behavior of the alternative
models (colors and labels as on A) for different reward histories, evaluated through the probability of choosing to switch in trial t (E:
KA; G: PO). F,H, Model predictions of the alternative models for within-block behavior. Models are fit to individual animals (F: KA;
H: PO). Behavior is best explained by the foraging model for both monkeys. Top: probability of selecting the HIGH target; bottom:
probability of choosing to switch between trials. Dashed line marks the start of the last five trials, where reward probabilities
change gradually

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural correlates of RL

12

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural correlates of RL

12

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural correlates of RL

12

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint

obtained from behavior

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions P (st+1|st, at)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

13

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

Bellmann equation for Q:

Q⇡(s, a) =
X

s0

P (s0|a, s)
h
r(s, a, s0) +

X

a

⇡(a|s0) �Q⇡(s
0, a)

i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions P (st+1|st, at)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

14

state transitions
rewards:
discounting:

policy:

what is the value associated with a given state under a policy?
Bellmann equation:

P (st+1|st, at)
r(st, at, st+1)

Rt = rt+1 + �rt+2 + �2rt+2 + . . .

=
1X

k=0

�krt+k+1

⇡(at|st)

Bellmann equation for Q:

Q⇡(s, a) =
X

s0

P (s0|a, s)
h
r(s, a, s0) +

X

a

⇡(a|s0) �Q⇡(s
0, a)

i

V⇡(s) = E⇡[Rt |St = s]

= E⇡

h 1X

k=0

�krt+k+1

���St = s
i

= E⇡

h
rt+1 + �

1X

k=0

�krt+k+2

���St = s
i

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
"
r(s, a, s0) + �E⇡

h 1X

k=0

�krt+k+2

���St = s0
i#

=
X

a

⇡(a|s)
X

s0

P (s0|a, s)
h
r(s, a, s0) + �V⇡(s

0)
i

• consistency relationship
between states

• depends on policy
• optimal policy: highest value
• learning: find the optimal

policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

15

Computing the value function, V(s)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

15

Computing the value function, V(s)

random policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

15

Computing the value function, V(s)

random policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Simple model environment: gridworld

15

Computing the value function, V(s)

random policy

optimal policy

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

temporal difference (TD-) learning

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

temporal difference (TD-) learning
• don’t wait with the updates until rewards!

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

temporal difference (TD-) learning
• don’t wait with the updates until rewards!
• use intermediate value estimates to update the action-values!

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

temporal difference (TD-) learning
• don’t wait with the updates until rewards!
• use intermediate value estimates to update the action-values!

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

temporal difference (TD-) learning
• don’t wait with the updates until rewards!
• use intermediate value estimates to update the action-values!

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

model-based

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Alternative solutions to Bellmann equation

16

dynamic programming
• use simulations to
• solve the Bellmann equations iteratively
• need an accurate model of the environment
• policy evaluation: Vπ(s) | π(a|s)
• policy improvement: π(a|s) | Vπ(s)

Monte Carlo techniques
• wait until the reward arrives
• update value functions based on average returns

temporal difference (TD-) learning
• don’t wait with the updates until rewards!
• use intermediate value estimates to update the action-values!

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

model-based

model-free

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

temporal difference learning

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

temporal difference learning
• don’t wait with the updates until the reward!

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

temporal difference learning
• don’t wait with the updates until the reward!Q⇡(st, at) Q⇡(st, at) + ↵

h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

temporal difference learning
• don’t wait with the updates until the reward!Q⇡(st, at) Q⇡(st, at) + ↵

h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

temporal difference learning
• don’t wait with the updates until the reward!

temporal difference

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Intuition for Temporal Difference Learning

17

temporal difference learning
• don’t wait with the updates until the reward!

Monte Carlo temporal difference

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q⇡(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q⇡(st+1, at+1)| {z }

estimate

�Q⇡(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

RL in practice

18

temporal difference learning
• don’t wait with the updates until the end of the trial!

• Q-learning:

a powerful algorithm that has been applied to many different real-word
problems

neuronal implementation:

• learn the state space - representational learning

• tabular vs. function approximation

• learning is based on prediction error

• is reward prediction error calculated by the brain?

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q(st+1, at+1)| {z }

estimate

�Q(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i
Q⇡(st, at) Q⇡(st, at) + ↵

h
Rt �Q(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q(st+1, at+1)| {z }

estimate

�Q(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Decision making with a neural network and TD learning

• Gerard Tesauro TD-backgammon
• Multi-layer neural network
• Input: possible states achieved by

potential moves
• Output: the probability of winning

from an actual state
• Based on these, a policy can be

established
• Result: performance is compatible with

the best human players
• Training the algorithm takes about 5s

19

Optimális döntések tanulása neurális
hálózattal

● Gerald Tesauro: TD-Gammon
● Többrétegű neuronhálózat
● Bemenet: a lehetséges lépések  

nyomán elért állapotok
● Kimenet: a nyerés valószínűsége

az adott állapotból
● Ez alapján ki lehet választani,

hogy melyik állapotba
szeretnénk kerülni

● Eredmény: a legjobb  
emberi játékosokkal  
összemérhető

● A teljes tanítási folyamat ma: 5s

Optimális döntések tanulása neurális
hálózattal

● Gerald Tesauro: TD-Gammon
● Többrétegű neuronhálózat
● Bemenet: a lehetséges lépések  

nyomán elért állapotok
● Kimenet: a nyerés valószínűsége

az adott állapotból
● Ez alapján ki lehet választani,

hogy melyik állapotba
szeretnénk kerülni

● Eredmény: a legjobb  
emberi játékosokkal  
összemérhető

● A teljes tanítási folyamat ma: 5s

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Decision making with a neural network and TD learning Deep Q learning

20

AlphaZero (Silver et al., 2018)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Decision making with a neural network and TD learning Deep Q learning

21

Atari games (Mnih et al., 2015)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Decision making with a neural network and TD learning Deep Q learning

21

everything the agent can
not fully control

Atari games (Mnih et al., 2015)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural representation: dopamine signal

22

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q(st+1, at+1)| {z }

estimate

�Q(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Neural representation: dopamine signal

23

Q⇡(st, at) Q⇡(st, at) + ↵
h
Rt �Q(st, rt)

i

Q⇡(st, at) Q⇡(st, at) + ↵
h
rt+1 + �Q(st+1, at+1)| {z }

estimate

�Q(st, at)
i

Q(st, at) Q(st, at) + ↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
prediction error

i

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

↵
h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

| {z }
�t

i
Qt Qt+1 �Qt ht �t

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Model-based RL in the brain

24

RL-változatok korrelátumai az agyban

Reaktív modellmentes RL  
kéreg alatti struktúrák

Deliberatív modellalapú RL 
prefrontális és parietális kéreg
Deliberative, model-based RL
prefrontal and parietal cortices

Reactive, model-free RL
subcortical structures

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:
• TD-learning:

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:
• TD-learning:

• midbrain dopamine signals prediction error (PE)

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:
• TD-learning:

• midbrain dopamine signals prediction error (PE)
• relevant for TD learning

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:
• TD-learning:

• midbrain dopamine signals prediction error (PE)
• relevant for TD learning
• PE is communicated to many brain regions

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:
• TD-learning:

• midbrain dopamine signals prediction error (PE)
• relevant for TD learning
• PE is communicated to many brain regions
• error based learning is widespread in the brain

http://golab.wigner.mta.hu

http://golab.wigner.mta.hu

Conclusions

25

• reinforcement learning:
• learning from interaction with the environment

• computation: learning by interaction
• algorithm:

• TD-learning
• model-based

• implementation:
• TD-learning:

• midbrain dopamine signals prediction error (PE)
• relevant for TD learning
• PE is communicated to many brain regions
• error based learning is widespread in the brain

http://golab.wigner.mta.hu

