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Recap: Learning frameworks

Unsupervised

Supervised learning: y=f(x) — essentially a mapping from
iINnput to output

-> task specific

-> requlires labelled data points

-> essentially optimization

-> pack-propagation could be easily obtained
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Recap: Learning frameworks

Unsupervised

Supervised learning: y=f(x) — essentially a mapping from
iINnput to output

-> task specific

-> requlires labelled data points

-> essentially optimization

-> pack-propagation could be easily obtained

Reinforcement learning

-> phrasing learning as collection of reward
-> sparser learning signal

-> max E [Reward(input, action)]
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reward Is not immediate:
most of the actions are not rewarding by themselves, as rewards are distal

options are not readily available:
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rewards are not known and one experience does not tell exactly how rewarding a state is
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Reinforcement learning

§< Rt+l .
. S.. | Environment
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Reinforcement learning

State

action
A,

everything the agent can
not fully control
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Reinforcement learning

State

e state of the environment

action
A,

everything the agent can
not fully control
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Reinforcement learning

State

e state of the environment

* partially observed

action
A,

everything the agent can
not fully control
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Reinforcement learning

State

 state of the environment
* partially observed

* Markov property

action
A,

> everything the agent can
state transition ot fully control
function G(sq, ac) 4
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Reinforcement learning

State Action

 state of the environment
* partially observed

* Markov property

action
A,

> everything the agent can
state transition ot fully control
function G(sq, ac) 4
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Reinforcement learning

State Action

* state of the environment * agents interact with the
environment with actions

* partially observed

* Markov property

action
A,

everything the agent can
not fully control

Environment

state transition
function G(sg, ac)
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Reinforcement learning

State Action

* state of the environment * agents interact with the

- partially observed environment with actions

* policy maps states to
actions

* Markov property

policy Tt (a¢st)

action
A,

everything the agent can
not fully control

Environment

state transition
function G(sg, ac)
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Reinforcement learning

State Action

* state of the environment * agents interact with the

- partially observed environment with actions

* policy maps states to

* Markov property .
actions

* actions may change the
state and/or lead to reward

policy Tt (a¢st)

action
A,

everything the agent can
state transition ot fully control
function G(sq, ac) 4
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Reinforcement learning

State Action Reward

* state of the environment * agents interact with the

- partially observed environment with actions

* policy maps states to

* Markov property .
actions

* actions may change the
state and/or lead to reward

policy Tt (a¢st)

action
A,

everything the agent can
state transition ot fully control
function G(sq, ac) 4
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Reinforcement learning

State Action Reward
* state of the environment * agents interact with the * R¢(s,a) is the reward given at
environment with actions time t in state s and action a

* partially observed
* policy maps states to

* Markov property .
actions

* actions may change the
state and/or lead to reward

policy Tt (a¢st)

action
A,

everything the agent can
state transition ot fully control
function G(sq, ac) 4
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Reinforcement learning

State Action Reward
* state of the environment * agents interact with the * R¢(s,a) is the reward given at
environment with actions time t in state s and action a

* partially observed
* policy maps states to * negative or positive

* Markov property .
actions

* actions may change the
state and/or lead to reward

policy Tt (a¢st)

action
A,

everything the agent can
state transition ot fully control
function G(sq, ac) 4
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Reinforcement learning

State Action Reward
* state of the environment * agents interact with the * R¢(s,a) is the reward given at
« partially observed environment with actions time t in state s and action a
« Markov property . pol.icy maps states to * negative or positive

actions e goal: maximise total reward

* actions may change the
state and/or lead to reward

policy Tt (a¢st)

action
A,

everything the agent can
not fully control

reward function Re(syar)

Environment

state transition
function G(sg, ac)
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Reinforcement learning

cumulative reward: R = Z I
k
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Reinforcement learning

cumulative reward: R = Z I
k
discounted reward: R = Z akr,

k
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Reinforcement learning

cumulative reward: R = 2 I

k
discounted reward: R = Z akr,
k
formal goal: V = E[X£]
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Reinforcement learning

cumulative reward: R = 2 I

k
discounted reward: R = Z akr,
k
formal goal: V = E[X£]

more precisely: V(s) = E[Z£, | 5]
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Reinforcement learning

cumulative reward: £ = 2 I

k
discounted reward: R = 2 akr,
k
formal goal: V =E[H£]

more precisely: V(s) = E[Z£, | 5]

more more precisely: V. _(s) = E_[Z, ] s]

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

cumulative reward: R = Z I

k
discounted reward: R = Z akr,
k
formal goal: V = E[X£]

more precisely: V(s) = E[Z£, | 5]

more more precisely: V. _(s) = E_[Z, ] s]
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Reinforcement learning

cumulative reward: R = Z I

k
discounted reward: R = Z akr,
k
formal goal: V = E[X£]

more precisely: V(s) = E[Z£, | 5]

more more precisely: V. _(s) = E_[Z, ] s]

thus, make explicit that not all states are equivalent: r,, ; = r(s;, a, S;,.1)
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Reinforcement learning

cumulative reward: R = Z I

k
discounted reward: R = Z akr,
k
formal goal: V = E[X£]

more precisely: V(s) = E[Z£, | 5]

more more precisely: V. _(s) = E_[Z, ] s]
thus, make explicit that not all states are equivalent: r,, ; = r(s;, a, S;,.1)

along with how the world works — p(s,,{|s,, a,) — we have all the ingredients
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Simple model environment: gridworld
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Simple model environment: gridworld

what is the value associated with a given state under a policy?
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what is the value associated with a given state under a policy?
Bellmann equation:
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Simple model environment: gridworld

what is the value associated with a given state under a policy?
Bellmann equation:

Vi(s) =E|[R:| S = s
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Simple model environment: gridworld

what is the value associated with a given state under a policy?

Bellmann equation:
Vi(s) =E|[R:| S = s
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* consistency relationship
between states
* depends on policy

* learning: find the optimal

policy
NG

* optimal policy: highest value

~N
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Simple model environment: gridworld

what is the value associated with a given state under a policy?

Bellmann equation:
Vi(s) =E|[R:| S = s

=K, {ZWkTHkH ‘ St = S}

k=0
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* learning: find the optimal

policy
NG

* optimal policy: highest value

~N

/
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Simple model environment: gridworld

what is the value associated with a given state under a policy?
Bellmann equation:

VW(S) =

EW[Rt ’ St = S]

=K, {Z’Ykrwkﬂ ‘ St = S}

k=0

Er [Tt+1 + ')/Z')/th+k+2 | St = 5]
k=0
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Simple model environment: gridworld

what is the value associated with a given state under a policy?
Bellmann equation:

VW(S) =

EW[Rt ’ St = S]

o0

=K, {Z’Ykrwkﬂ ‘ St = S}

k=0

Er [Tt+1 + VZVk"“tJrkH | St = 5]
k=0

> wlals) Y- P(s']as5) | r(s,a,8) + VBx | D4 respsa | Si =5
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Simple model environment: gridworld

what is the value associated with a given state under a policy?
Bellmann equation:

Vi(s) =E|[R:| S = s

o0

=K, {Z’Ykrwkﬂ ‘ St = S}
k=0

Er [Tt+1 + 727thij+2 | St = 5]

2
2

k=0

als) " P(s'la,s) [7(s,a,8") + 1Ex | D07 ripnn| St =5
s’ k=0 i

als) Z P(s'|a, s) :r(s, a,s’) + ’}/VW(S/)}

-

* consistency relationship
between states
* depends on policy

* learning: find the optimal

policy
NG

* optimal policy: highest value

~N

/
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Simple model environment: gridworld

what is the value associated with a given state under a policy?
Bellmann equation:

Vi(s) =E|[R:| S = s

=K, {Z’Ykrwkﬂ ‘ St = S}
k=0

— Eﬂ {Tt—l—l -+ 727]{7“75_|_k_|_2 | St — S]
k=0

> wlals) Y- P(s']as5) | r(s,a,8) + VBx | D4 respsa | Si =5

k=0 _

— Z m(als) Z P(S/|CL, s) :T(Sv a, 3/) + ’YVW(S,)}
a s’ /

: . _ * consistency relationship
Slight generalization: Bellmann equation for Q: hamenan aanane
Qr(s,a) = * depends on policy

* learning: find the optimal

policy
NG

_ ZP(S/M’ 5) {T(& a,s) + Zw(a|s') Y Qx (S, a)]

* optimal policy: highest value

~N

/
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Challenges in RL

Why is it hard?

* rewards are distal - credit assignment problem
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Challenges in RL

Why is it hard?
* rewards are distal - credit assignment problem

* exploration - exploitation dilemma
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Challenges In

Why is it hard?
* rewards are distal - credit assignment problem

* exploration - exploitation dilemma

* state-space is huge - searching takes a long time!
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Challenges In

Why is it hard?
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Challenges in RL

Why is it hard?

* rewards are distal - credit assignment problem

* exploration - exploitation dilemma

* state-space is huge - searching takes a long time!

* state dynamics is unknown

* state dynamics can be stochastic - noisy environment or noisy action
* rewards can be stochastic

* states are only partially observed

* rules change with time
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We consider the simple setting, where every action might be rewarding, only the expected reward
for the state is changing
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Challenge 1: uncertain outcomes

We consider the simple setting, where every action might be rewarding, only the expected reward

for the state is changing

formal goal: O(s) = E[A]

discounted reward: X = Z akr(s)
k

Every state has a Q value
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Neural correlates of RL
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Simple model environment: gridworld

state transitions  P(s;,1]s;, a4)

Bellmann equation for Q:

Qr(s,a) = ZP(S/|CL, s) {r(s, a,s') + Zw(a|s’) v Qr (s, a)}

policy: 7T(a,t ‘ St)

what is the value associated with a given state under a policy?

Bellmann equation: -~ N
Vi(s) =Ex[R¢]|S; = s * consistency relationship
o between states
_E, [Z NI | S, — s} * depends on policy
o * optimal policy: highest value
o * learning: find the optimal
= Ex ["“t+1 T Z VT hto ‘ St = S} policy
NG /

k=0

als) Y P(s'la,s) (s, a,8) + YEx | D07 riipsn| St =5
s’ | k=0 i
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Simple model environment: gridworld

Computing the value function, V(s)
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leaving office, friday at 6 0 30 30
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RL In practice

temporal difference learning
- don’t wait with the updates until the end of the triall

Qn(st,ar)  Qulst,a0) + | ress +7Q(s141,a141) ~Q(si, 1)

IV

estimate

 Q-learning:
a powerful algorithm that has been applied to many different real-word
problems

Q(s¢,at) < Q(s¢,a4) + O‘[TtJrl T VmO?JXQ(StH»a) — Q(Staat)}

A\ 4
N

prediction error

neuronal implementation:

* learn the state space - representational learning

- tabular vs. function approximation

* learning is based on prediction error

- is reward prediction error calculated by the brain?

http://golab.wigner.mta.hu
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Decision making with a neural network and 1D learning

o Multi-layer neura

Gerard Tesauro TD-backgammon

Nnetwork

e |nput: possible st
potential moves

ates achieved by

e QOutput: the probability of winning
from an actual state

e Based on these, a policy can be

established

e Result: performance is compatible with
the best human players

¢ [raining the algorithm takes about 5s
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Decision making with a neural network and TD learning Deep Q learning

AlphaZero (Silver et al., 2018)
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Neural representation: dopamine signal
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Neural representation: dopamine signal
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Model-based RL in the brain
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