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Recap: Learning frameworks

• Unsupervised 

• Supervised learning: y=f(x) — essentially a mapping from 
input to output 
-> task specific 
-> requires labelled data points 
-> essentially optimization 
-> back-propagation could be easily obtained 

• Reinforcement learning 
-> phrasing learning as collection of reward 
-> sparser learning signal 
-> max E [Reward(input, action)]
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 options are not readily available:  
rewards are not known and one experience does not tell exactly how rewarding a state is



http://golab.wigner.mta.hu

Reinforcement learning

4

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State

everything the agent can 
not fully control

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

everything the agent can 
not fully control

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

everything the agent can 
not fully control

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

everything the agent can 
not fully controlstate transition 

function G(st, at)

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action

everything the agent can 
not fully controlstate transition 

function G(st, at)

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the 

environment with actions

everything the agent can 
not fully controlstate transition 

function G(st, at)

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the 

environment with actions

• policy maps states to 
actions

everything the agent can 
not fully controlstate transition 

function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the 

environment with actions

• policy maps states to 
actions

• actions may change the 
state and/or lead to reward

everything the agent can 
not fully controlstate transition 

function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the 

environment with actions

• policy maps states to 
actions

• actions may change the 
state and/or lead to reward

Reward

everything the agent can 
not fully controlstate transition 

function G(st, at)

policy πt (at|st)

http://golab.wigner.mta.hu


http://golab.wigner.mta.hu

Reinforcement learning

4

State
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• partially observed

• Markov property

Action
• agents interact with the 

environment with actions

• policy maps states to 
actions

• actions may change the 
state and/or lead to reward

Reward
• Rt(s,a) is the reward given at 

time t in state s and action a

everything the agent can 
not fully control

reward function Rt(st,at)

state transition 
function G(st, at)

policy πt (at|st)
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State
• state of the environment

• partially observed

• Markov property

Action
• agents interact with the 

environment with actions

• policy maps states to 
actions

• actions may change the 
state and/or lead to reward

Reward
• Rt(s,a) is the reward given at 

time t in state s and action a

• negative or positive

• goal: maximise total reward

everything the agent can 
not fully control

reward function Rt(st,at)

state transition 
function G(st, at)

policy πt (at|st)
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ℛ = ∑
k

rkcumulative reward:

V = 𝔼[ℛ]formal goal:

ℛ = ∑
k

αkrkdiscounted reward:

V(s) = 𝔼[ℛt |s]more precisely:

Vπ(s) = 𝔼π[ℛt |s]more more precisely:

policy: 
π(at |st)

thus, make explicit that not all states are equivalent: rt+1 = r(st, at, st+1)

along with how the world works —  — we have all the ingredientsp(st+1 |st, at)
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Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).
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Figure 2. Performance of alternative models. A, Efficiency of models and experimental animals in harvesting rewards. Four
models are compared: win-stay–lose-switch (WSLS), two versions of the reinforcement learning model (Standard RL, Inferential
RL), and the foraging model. Chance level is at 33%. Dashed line: performance of an optimal model. B, Predictive performance
of alternative models on the choice behavior of the two animals. Both RL models were tested with and without fitting the stickiness
parameter (RL-s). Performance is measured through calculating the likelihood of making the choice of the animal per trial. C,
Comparison of Inferential RL performance at various values of learning rate and fitted values for the two animals (dots). D,
Comparison of foraging model performance at various settings of two key parameters (learning rate and switch threshold) and the
performance of the model at parameter values fitted to the choices of the experimental animals. E,G, Behavior of the alternative
models (colors and labels as on A) for different reward histories, evaluated through the probability of choosing to switch in trial t (E:
KA; G: PO). F,H, Model predictions of the alternative models for within-block behavior. Models are fit to individual animals (F: KA;
H: PO). Behavior is best explained by the foraging model for both monkeys. Top: probability of selecting the HIGH target; bottom:
probability of choosing to switch between trials. Dashed line marks the start of the last five trials, where reward probabilities
change gradually
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Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).
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Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).
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change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
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model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
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ROC-AUC (averaged across three Q-values).

Zsombor Ungvarszki et al. | Foraging-like computations in frontal cortex | 5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2025. ; https://doi.org/10.1101/2025.09.29.679289doi: bioRxiv preprint 

Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
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Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.
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changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).
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Figure 1. Behavioral performance and modeling. A-C, Behavioral paradigm. A, In each trial, monkeys first had to initiate
the trial by touching a lever and holding it for 1000 ms (lever touch to validation, Lt, Lv, respectively), then choose a target by
holding it for 450 ms (target touch to target validation, Tt, Tv, respectively). After a 500 ms delay, either a juice reward or no
reward was delivered (Fb), depending on the trial outcome. B, Outcome probabilities of a trial: in each trial, one target had a
70% reward rate and the other two had 25% reward rates (HIGH and LOW, respectively). C, The identity of the HIGH target
changed randomly after blocks of 40±5 trials. D,E, Percent HIGH target selection (D) and probability of switching (E) throughout a
block, across sessions for the two monkeys (KA, PO). Dashed line marks the start of the last five trials, where reward probabilities
change gradually. F, Logistic regression of the contribution of past trials to choosing to stay with the previous target or switching
to a new one from most recent (t-1) to a distant (t-10) trial, for the two animals. Filled circles indicate significant deviation from
zero. G,H, Schematic illustration of the computations for choice foraging and reinforcement learning, respectively. The Foraging
model tracks the value of the currently pursued action (Vexploit) and compares it to a threshold (ω ) to decide to persist or switch
to an alternative action. The reinforcement learning (RL) model tracks action values – one per option – and compares them
directly to select the best one. I, Choices in two example blocks and calculated values for the two theoretical accounts. Left, the
Foraging model maintains a single running value (red); as it approaches the switching threshold (light brown line), the probability
of switching increases. Right, the Reinforcement Learning model tracks three action values parallelly and selects the highest.
J,K, Characteristics of the Foraging model. J, Probability of persisting (exploit) or switching as a function of the exploit value
(Vexploit). K, Predictive accuracy of (Vexploit) quantified by ROC-AUC. L,M, Characteristics of the RL model. L, Choice probability
as a function of the Q-value (probabilities computed per choice then averaged). M, Predictive accuracy of Q-values quantified by
ROC-AUC (averaged across three Q-values).
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Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.
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Figure 4. Arithmetic of neural dynamics. A, Time course of feedback decoding performance in the three recorded regions.
Lines show mean decoder performance in the composite-session. B, Dependence of MCC activity on outcome history. Feedback
decoders are trained for individual time points during a trial of the composite-session. Trajectories are population responses
projected in the one-dimensional subspace identified by the decoder, average population response intensities are calculated for
different outcome histories (colors). This quantity is called the neural value. Shaded background: period of task engagement. C,
Across-session dependence of neural value on outcome history for the three recorded regions. Dots represent individual sessions,
box and whisker shows median and (10, 25, 75, 90 percentiles), neural value is measured in the task engagement period, n

indicates number of sessions. D, Trial-by-trial change of neural value across sessions for positive and negative outcomes, for
the three recorded regions. The distribution of changes across sessions (dots) is characterized with violin, box-and-whisker
plots. E, Trial-by-trial (dots) dynamics of the neural value in an example session from MCC. Positive outcome (green) raises the
neural value more if it was low in the previous trials, while a negative outcome (red) decreases the neural value more if it was
high in the previous trial. Neural value is calculated from the task engagement period. F, Contribution of past outcomes to the
neural responses in MCC and dLPFC, as quantified by CPD. Dots indicate individual sessions, circles and error bars indicate
mean and standard deviation. Filled circles indicate significant deviation from zero. G, Optimality of the behavior-derived value
for predicting neural activity. Left panel: Correlation of calculated behavioral value with population responses as a function of
assumed learning rates (ω) of the foraging model (colors correspond to learning rates on the right panel) at different times during
the trial. Shaded area: period of task engagement. Right panel: mean predictive strength of behavioral value as a function of
learning rate, averaged across the task engagement period. Dashed line: learning rate from behavioral fit.
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RL in practice

18

temporal difference learning 
• don’t wait with the updates until the end of the trial!


• Q-learning:

a powerful algorithm that has been applied to many different real-word 
problems


neuronal implementation: 

• learn the state space - representational learning

• tabular vs. function approximation

• learning is based on prediction error

• is reward prediction error calculated by the brain?
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Decision making with a neural network and TD learning

• Gerard Tesauro TD-backgammon 
• Multi-layer neural network 
• Input: possible states achieved by 

potential moves 
• Output: the probability of winning 

from an actual state 
• Based on these, a policy can be 

established 
• Result: performance is compatible with 

the best human players 
• Training the algorithm takes about 5s

19

Optimális döntések tanulása neurális 
hálózattal

● Gerald Tesauro: TD-Gammon 
● Többrétegű neuronhálózat 
● Bemenet: a lehetséges lépések  

nyomán elért állapotok 
● Kimenet: a nyerés valószínűsége 

az adott állapotból 
● Ez alapján ki lehet választani, 

hogy melyik állapotba 
szeretnénk kerülni 

● Eredmény: a legjobb  
emberi játékosokkal  
összemérhető 

● A teljes tanítási folyamat ma: 5s
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Decision making with a neural network and TD learning Deep Q learning

20

AlphaZero (Silver et al., 2018)
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Atari games (Mnih et al., 2015)
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everything the agent can 
not fully control

Atari games (Mnih et al., 2015)
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Neural representation: dopamine signal
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Model-based RL in the brain
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RL-változatok korrelátumai az agyban

Reaktív modellmentes RL  
kéreg alatti struktúrák

Deliberatív modellalapú RL 
prefrontális és parietális kéreg
Deliberative, model-based RL 
prefrontal and parietal cortices

Reactive, model-free RL 
subcortical structures
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